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Abstract

Solving constraint satisfaction problems (CSP) ef-
ficiently depends on the solver configuration and
the search strategy. However, it is difficult to cus-
tomize the constraint solvers because they are not
modular enough, and it is hard to create new search
strategies by composition. To solve these problems,
we propose spacetime programming, a paradigm
based on lattices and synchronous process calculi
that views search strategies as processes working
collaboratively towards the resolution of a CSP. We
implement the compiler of the language and use it
to replace the search module of Choco, a state of
the art constraint solver, with an efficient spacetime
program that offers better modularity and composi-
tionality of search strategies.

1 Introduction
Backtracking algorithms are the corner stone of exhaustive
methods for solving Constraint Satisfaction Problems (CSP).
However, their implementations are often not modular or
non-compositional which results in solvers hard to read,
maintain and extend. It is important to bring modularity and
compositionality inside solvers because most CSP are NP-
complete in time. In this regard, acceptable performance on
large problem instances is usually achieved after the design
and test of several solver configurations and search strategies.
Indeed, there is no general algorithm working well for every
problem and sometimes even the shape of the data can im-
pact the performances. Therefore, we need support to easily
try and test the efficiency of new search strategies for a given
problem.

Lack of modularity Constraint solvers have evolved
through decades of software engineering and research in the
field. Despite this considerable effort, their implementations
are often monolithic and their core functionalities are entan-
gled [Schrijvers et al., 2013; Michel and Van Hentenryck,
2016]. This lack of modularity prevents the easy selection
of the solver components such as no-goods learning, propa-
gation strength or the state restoration policy.

Lack of compositionality Solvers are generally engineered
to be open for user-defined search strategies. However, it
is difficult to compose two existing strategies without hard-
coding the composition by hand. The problem is that search
strategies can be composed in various ways that are not eas-
ily captured by software abstractions. Examples include se-
quential composition ; concurrent composition by intersec-
tion or by union of the nodes of their search trees; or in an
interleaved fashion. Search combinators [Schrijvers et al.,
2013] is a high-level language to address this problem but
was deemed hard to implement in existing solvers [Rendl et
al., 2015]. Moreover, in current approaches, the search strat-
egy is isolated and cannot be concurrently composed. Also,
it is not convenient to use and share data across search strate-
gies. Hence, current abstractions in modern solvers fall short
to address compositionality of search strategies.

2 Spacetime Programming
Synchronous programming is a paradigm for modeling sys-
tems reacting to simultaneous events of the environment—
different inputs can arrive at the same time—while avoiding
typical issues of parallelism, such as deadlock or indetermin-
ism. In this paper, we focus on the Esterel [Berry, 2000] syn-
chronous language. We demonstrate that this notion of time
is ideal to program search strategies over a state-space. To
this end, we propose spacetime programming1, a language
that extends the synchronous paradigm to data over complete
lattices and with backtracking. We give an overview of the
statements in spacetime, and then provide an example. The
following statements are standard in the Esterel synchronous
language:

• s1 ; s2 is the sequential composition of the two state-
ments s1 and s2 ;

• par s1 || s2 end is the parallel composition of the
two statements s1 and s2—called processes ;

• pause delays the execution to the next instant ;

• loop s end executes indefinitely the body s. An in-
stant must always be executed in bounded time so the
body s must contain a pause statement.

1Compiler publicly available at github.com/ptal/bonsai.
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The first extension to data over lattices is given by two in-
structions metaphorically called ask and tell [Saraswat and
Rinard, 1989]. In addition, our language is embedded into
the object-oriented Java programming language. Hence, any
declared variable has a Java type and any monotonic Java
method is callable on this variable.

• when a |= b then s end to execute the body s
whenever we can deduce b from a in the current instant
(entailment relation).

• x <- e to augment the information in x with e ; it per-
forms the join operation x = x t e.

• o.m(e1, ..., en) to call the method m on the ob-
ject o with the arguments e1...en.

As a second extension, we provide a set of operators to dy-
namically create and prune the state-space. The spacetime
paradigm helps to navigate in this state-space by imposing
that one state is visited in each instant. Therefore, the pro-
cesses are synchronized through time and must progress at
the same rate. The backtracking extension is provided with
the following statements:

• spacetime Type var = e declares a variable var of
type Type initialized with the expression e. The at-
tribute spacetime refers to the memory of the variable
and is explained below.

• space s1 || s2 end creates two child nodes of the
current state. The statements s1 and s2 are executed
when the relevant child node is instantiated.

The spacetime attribute specifies how a variable evolves
through time and space. For this purpose, a spacetime pro-
gram has three distinct memories in which the variables can
be stored: (1) local memory (keyword single_time) for
variables local to an instant and re-initialized in each node;
(2) global memory (keyword single_space) for variables
evolving across instants and (3) backtrackable memory (key-
word world_line) for variables local to a path in the
search tree. We exemplify this paradigm by programming
a basic constraint solver where two processes collaborate to
find the first solution of a CSP:

module Solver =
world_line VStore domains;
world_line CStore constraints;
proc search = par propagation() || branch() end
proc propagation = loop

domains.propagate( constraints );
pause;

end
proc branch = loop
single_time IntVar x = domains. fail_first ();
single_time Integer v = x.middle_value();
space
|| constraints <- x.leq(v);
|| constraints <- x.ge(v);
end
pause;

end
end

The module Solver is structured into two fields
domains and constraints, and two processes
propagation and branch implementing a “propagate-
and-search” algorithm. Firstly, the types of the fields
VStore and CStore are Java classes abstracting the con-
straint library Choco [Prud’homme et al., 2015]. Along with
the method propagate in the process propagation,
they provide a usable abstraction in spacetime over a
state-of-the-art constraint library. Secondly, the state space
is generated by the process branch. It implements a
branching strategy selecting a variable x with the smallest
non-singleton domain (function fail_first) and the
middle value v of this domain (function middle_value).
The search space is then built with a binary space statement
where the first branch describes a future where x ≤ v
and the second branch describes a future where x > v.
This contributes to improve the modularity of Choco since
two individual processes—composed in parallel—work
collaboratively to solve a constraint problem.

3 Conclusion
We identified two main problems in the mainstream con-
straint solvers: the lack of modularity and of composition-
ality. Spacetime is a paradigm extending the synchronous
paradigm with lattices and backtracking. Modularity is
achieved by lattice-based variables that only evolve mono-
tonically and that can be safely shared among processes.
The synchronous approach solves the compositionality prob-
lem by providing a notion of logical time for synchronizing
the search strategies viewed as independent processes. This
project is the first step to create highly customized constraint
solvers. In the long run, it will open the door to machine
learning methods to dynamically select the best solver config-
urations and search strategies for a given problem and from a
library of existing strategies.
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